Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.941
Filtrar
1.
Am J Manag Care ; 30(4): 161-168, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38603530

RESUMO

OBJECTIVES: Generic medications represent 90% of prescriptions in the US market and provide a tremendous financial benefit for patients. Recently, multiple generic drugs have been recalled due to the presence of carcinogens, predominantly N-nitrosodimethylamine (NDMA), including an extensive recall of extended-release (ER) metformin products in 2020. STUDY DESIGN: Primary pharmaceutical quality testing and database analysis. METHODS: We tested marketed metformin immediate-release (IR) and ER tablets from a wide sample of generic manufacturers for the presence of carcinogenic impurities NDMA and N,N-dimethylformamide (DMF). We examined the association of level of impurity with drug price and the impact of the 2020 FDA recalls on unit price and prescription fill rate. RESULTS: Postrecall NDMA levels were significantly lower in metformin ER samples (standardized mean difference = -2.0; P = .01); however, we found continued presence of carcinogens above the FDA threshold in 2 of 30 IR samples (6.67%). Overall, the presence of contaminant levels was not significantly associated with price for either IR (NDMA: R2 = 0.142; P = .981; DMF: R2 = 0.382; P = .436) or ER (NDMA: R2 = 0.124; P = .142; DMF: R2 = 0.199; P = .073) samples. Despite recalls, metformin ER prescription fills increased by 8.9% while unit price decreased by 19.61% (P < .05). CONCLUSIONS: Recalls of metformin ER medications were effective in lowering NDMA levels below the FDA threshold; however, some samples of generic metformin still contained carcinogens even after FDA-announced recalls. The absence of any correlation with price indicates that potentially safer products are available on the market for the same price as poorer-quality products.


Assuntos
Metformina , Humanos , Metformina/uso terapêutico , Medicamentos Genéricos , Prescrições , Dimetilnitrosamina/análise , Carcinógenos
2.
Rapid Commun Mass Spectrom ; 38(11): e9747, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38600640

RESUMO

RATIONALE: N-Nitroso dimethylamine (NDMA) is a mutagenic impurity detected in several ranitidine products. The amino functional group of ranitidine is a risk factor for classical nitrosation-induced NDMA formation in ranitidine drug products during storage conditions. The United States Food and Drug Administration (US FDA) recommended the use of antioxidants to control NDMA in drug products. Considering the need for sensitive analytics, a liquid chromatography/high-resolution mass spectrometry (LC-HRMS) method was developed and validated to detect NDMA in this pilot study to demonstrate the antioxidants as inhibitors of nitrosation reactions. METHODS: The method, utilizing an EC-C18 column and tuned to atmospheric pressure chemical ionization/selected ion monitoring (APCI/SIM) mode, separated NDMA (m/z: 75.0553; tR: 3.71 min) and ranitidine (m/z: 315.1485; tR: 8.61 min). APCI mode exhibited four times higher sensitivity to NDMA than electrospray ionization (ESI) mode. Classical nitrosation of the dimethyl amino group of ranitidine was studied with sodium nitrite in solid pellets. Antioxidants (alpha-tocopherol, ascorbic acid, and trolox) were evaluated as NDMA attenuators in ranitidine pellets under vulnerable storage conditions. The developed method quantified NDMA levels in samples, extracted with methanol through vortex shaking for 45 min. RESULTS: The method achieved a limit of detection (LOD) and limit of quantitation (LOQ) of 0.01 and 0.05 ng/mL, respectively, with linearity within 1-5000 ng/mL (R1: 0.9995). It demonstrated good intra-day and inter-day precision (% RSD [relative standard deviation]: <2) and accuracy (96.83%-101.72%). Nitrosation of ranitidine induced by nitrite was significant (p < 0.001; R2 = 0.9579) at various sodium nitrite levels. All antioxidants efficiently attenuated NDMA formation during ranitidine nitrosation. Ascorbic acid exhibited the highest NDMA attenuation (96.98%), followed by trolox (90.58%). This study recommends 1% ascorbic acid and trolox as potent NDMA attenuators in ranitidine drug products. CONCLUSIONS: This study compared the effectiveness of antioxidants as NDMA attenuators in ranitidine under storage conditions susceptible to NDMA generation. The study concluded that ascorbic acid and trolox are potent inhibitors of NDMA formation and nitrosation attenuators in ranitidine drug products.


Assuntos
Dimetilnitrosamina , Ranitidina , Ranitidina/química , Dimetilnitrosamina/análise , Dimetilnitrosamina/química , Antioxidantes , Cromatografia Líquida de Alta Pressão/métodos , Nitrosação , Nitrito de Sódio , Projetos Piloto , Preparações Farmacêuticas , Ácido Ascórbico
3.
Cancer Lett ; 588: 216813, 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38499266

RESUMO

Rat model of N-nitrosomethylbenzylamine (NMBzA)-induced esophageal squamous cell carcinoma (ESCC) is routinely used to study ESCC initiation, progression and new therapeutic strategies. However, the model is time-consuming and malignant tumor incidences are low. Here, we report the usage of multi-kinase inhibitor sorafenib as a tumor promoter to establish an efficient two-stage NMBzA-induced rat ESCC carcinogenesis model, resulting in increments of tumor incidences and shortened tumor formation times. By establishing the model and applying whole-genome sequencing, we discover that benign papillomas and malignant ESCCs harbor most of the "driver" events found in rat ESCCs (e.g. recurrent mutations in Ras family, the Hippo and Notch pathways and histone modifier genes) and the mutational landscapes of rat and human ESCCs overlap extensively. We generate tumor cell lines derived from NMBzA-induced papillomas and ESCCs, showing that papilloma cells retain more characteristics of normal epithelial cells than carcinoma cells, especially their exhibitions of normal rat cell karyotypes and inabilities of forming tumors in immunodeficient mice. Three-dimensional (3-D) organoid cultures and single cell RNA sequencing (scRNA-seq) indicate that, when compared to control- and papilloma-organoids, ESCC-organoids display salient abnormalities at tissue and single-cell levels. Multi-omic analyses indicate that NMBzA-induced rat ESCCs are accompanied by progressive hyperactivations of the FAT-Hippo-YAP1 axis and siRNA or inhibitors of YAP1 block the growth of rat ESCCs. Taken together, these studies provide a framework of using an effective rat ESCC model to investigate multilevel functional genomics of ESCC carcinogenesis, which justify targeting YAP1 as a therapeutic strategy for ESCC.


Assuntos
Carcinoma de Células Escamosas , Dimetilnitrosamina/análogos & derivados , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Papiloma , Humanos , Ratos , Camundongos , Animais , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/metabolismo , Neoplasias Esofágicas/induzido quimicamente , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas/induzido quimicamente , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Linhagem Celular Tumoral , Carcinogênese
4.
J Food Drug Anal ; 32(1): 1-20, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38526593

RESUMO

Liver fibrosis occurs due to injury or inflammation, which results in the excessive production of collagen and the formation of fibrotic scar tissue that impairs liver function. Despite the limited treatment options available, freshwater clams may hold promise in the treatment of liver fibrosis. In this study, we demonstrated the effects of ethanol extract of freshwater clam (FCE), ethyl acetate extract of FCE (EA-FCE), and trans-2-nonadecyl-4-(hydroxymethyl)-1,3-dioxolane (TNHD) on liver fibrosis induced by dimethylnitrosamine (DMN). Administration of FCE and TNHD alleviated liver injury, including tissue damage, necrosis, inflammation scores, fibrosis scores, serum enzymes, and triglyceride levels. Furthermore, we analyzed the expression of fibrosis-related proteins, such as α-smooth muscle actin (α-SMA) and transforming growth factor (TGF-ß), as well as the hydroxyproline content, which decreased after treatment with FCE and TNHD. Animal experiments revealed that FCE and TNHD can reduce liver fibrosis by inhibiting cytokines that activate stellate cells and decreasing extracellular matrix (ECM) secretion. Cell experiments have shown that TNHD inhibits the MAPK/Smad signaling pathway and TGF-ß1 activation, resulting in a reduction in the expression of fibrosis-related proteins. Therefore, freshwater clam extracts, particularly TNHD, may have potential therapeutic and preventive effects for the amelioration of liver fibrosis.


Assuntos
Bivalves , Dimetilnitrosamina , Dioxolanos , Animais , Dimetilnitrosamina/toxicidade , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/genética , Bivalves/genética , Inflamação
5.
J Environ Sci (China) ; 141: 249-260, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38408825

RESUMO

Nitrosamines are a class of carcinogens which have been detected widely in food, water, some pharmaceuticals as well as tobacco. The objectives of this paper include reviewing the basic information on tobacco consumption and nitrosamine contents, and assessing the health risks of tobacco nitrosamines exposure to Chinese smokers. We searched the publications in English from "Web of Science" and those in Chinese from the "China National Knowledge Infrastructure" in 2022 and collected 151 literatures with valid information. The content of main nitrosamines in tobacco, including 4-(methylnitrosoamino)-1-(3-pyridyl)-1-butanone (NNK), N-nitrosonornicotine (NNN), N-nitrosoanatabine (NAT), N-nitrosoanabasine (NAB), total tobacco-specific nitrosamines (TSNA), and N-nitrosodimethylamine (NDMA) were summarized. The information of daily tobacco consumption of smokers in 30 provinces of China was also collected. Then, the intakes of NNN, NNK, NAT, NAB, TSNAs, and NDMA via tobacco smoke were estimated as 1534 ng/day, 591 ng/day, 685 ng/day, 81 ng/day, 2543 ng/day, and 484 ng/day by adult smokers in 30 provinces, respectively. The cancer risk (CR) values for NNN and NNK inhalation intake were further calculated as 1.44 × 10-5 and 1.95 × 10-4. The CR value for NDMA intake via tobacco smoke (inhalation: 1.66 × 10-4) indicates that NDMA is similarly dangerous in tobacco smoke when compared with the TSNAs. In China, the CR values caused by average nitrosamines intake via various exposures and their order can be estimated as the following: smoke (3.75 × 10-4) > food (1.74 × 10-4) > drinking water (1.38 × 10-5). Smokers in China averagely suffer 200% of extra cancer risk caused by nitrosamines in tobacco when compared with non-smokers.


Assuntos
Neoplasias , Nitrosaminas , Poluição por Fumaça de Tabaco , Adulto , Humanos , Fumantes , Poluição por Fumaça de Tabaco/efeitos adversos , Nitrosaminas/análise , Carcinógenos/análise , Fumaça/análise , Dimetilnitrosamina , China/epidemiologia , Neoplasias/epidemiologia , Produtos do Tabaco
6.
Food Chem Toxicol ; 186: 114498, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38341171

RESUMO

Since 2018, N-nitrosodimethylamine (NDMA) has been a reported contaminant in numerous pharmaceutical products. To guide the pharmaceutical industry, FDA identified an acceptable intake (AI) of 96 ng/day NDMA. The approach assumed a linear extrapolation from the Carcinogenic Potency Database (CPDB) harmonic-mean TD50 identified in chronic studies in rats. Although NDMA has been thought to act as a mutagenic carcinogen in experimental animals, it has not been classified as a known human carcinogen by any regulatory agency. Humans are exposed to high daily exogenous and endogenous doses of NDMA. Due to the likelihood of a threshold dose for NDMA-related tumors in animals, we believe that there is ample scientific basis to utilize the threshold-based benchmark dose or point-of-departure (POD) approach when estimating a Permissible Daily Exposure limit (PDE) for NDMA. We estimated that 29,000 ng/kg/day was an appropriate POD for calculating a PDE. Assuming an average bodyweight of 50 kg, we expect that human exposures to NDMA at doses below 5800 ng/day in pharmaceuticals would not result in an increased risk of liver cancer, and that there is little, if any, risk for any other type of cancer, when accounting for the mode-of-action in humans.


Assuntos
Neoplasias Hepáticas , Nitrosaminas , Humanos , Ratos , Animais , Dimetilnitrosamina/toxicidade , Nitrosaminas/toxicidade , Carcinógenos/toxicidade , Preparações Farmacêuticas
7.
Mutagenesis ; 39(2): 96-118, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38183622

RESUMO

The N-nitrosamine, N-nitrosodimethylamine (NDMA), is an environmental mutagen and rodent carcinogen. Small levels of NDMA have been identified as an impurity in some commonly used drugs, resulting in several product recalls. In this study, NDMA was evaluated in an OECD TG-488 compliant Muta™Mouse gene mutation assay (28-day oral dosing across seven daily doses of 0.02-4 mg/kg/day) using an integrated design that assessed mutation at the transgenic lacZ locus in various tissues and at the endogenous Pig-a gene-locus, along with micronucleus frequencies in peripheral blood. Liver pathology was determined together with NDMA exposure in blood and liver. The additivity of mutation induction was assessed by including two acute single-dose treatment groups (i.e. 5 and 10 mg/kg dose on Day 1), which represented the same total dose as two of the repeat dose treatment groups. NDMA did not induce statistically significant increases in mean lacZ mutant frequency (MF) in bone marrow, spleen, bladder, or stomach, nor in peripheral blood (Pig-a mutation or micronucleus induction) when tested up to 4 mg/kg/day. There were dose-dependent increases in mean lacZ MF in the liver, lung, and kidney following 28-day repeat dosing or in the liver and kidney after a single dose (10 mg/kg). No observed genotoxic effect levels (NOGEL) were determined for the positive repeat dose-response relationships. Mutagenicity did not exhibit simple additivity in the liver since there was a reduction in MF following NDMA repeat dosing compared with acute dosing for the same total dose. Benchmark dose modelling was used to estimate point of departure doses for NDMA mutagenicity in Muta™Mouse and rank order target organ tissue sensitivity (liver > kidney or lung). The BMD50 value for liver was 0.32 mg/kg/day following repeat dosing (confidence interval 0.21-0.46 mg/kg/day). In addition, liver toxicity was observed at doses of ≥ 1.1 mg/kg/day NDMA and correlated with systemic and target organ exposure. The integration of these results and their implications for risk assessment are discussed.


Assuntos
Dimetilnitrosamina , Mutagênicos , Dimetilnitrosamina/toxicidade , Mutação , Mutagênicos/toxicidade , Dano ao DNA , Mutagênese
8.
Environ Sci Technol ; 58(4): 2048-2057, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38238190

RESUMO

In drinking water chloramination, monochloramine autodecomposition occurs in the presence of excess free ammonia through dichloramine, the decay of which was implicated in N-nitrosodimethylamine (NDMA) formation by (i) dichloramine hydrolysis to nitroxyl which reacts with itself to nitrous oxide (N2O), (ii) nitroxyl reaction with dissolved oxygen (DO) to peroxynitrite or mono/dichloramine to nitrogen gas (N2), and (iii) peroxynitrite reaction with total dimethylamine (TOTDMA) to NDMA or decomposition to nitrite/nitrate. Here, the yields of nitrogen and oxygen-containing end-products were quantified at pH 9 from NHCl2 decomposition at 200, 400, or 800 µeq Cl2·L-1 with and without 10 µM-N TOTDMA under ambient DO (∼500 µM-O) and, to limit peroxynitrite formation, low DO (≤40 µM-O). Without TOTDMA, the sum of free ammonia, monochloramine, dichloramine, N2, N2O, nitrite, and nitrate indicated nitrogen recoveries ±95% confidence intervals were not significantly different under ambient (90 ± 6%) and low (93 ± 7%) DO. With TOTDMA, nitrogen recoveries were less under ambient (82 ± 5%) than low (97 ± 7%) DO. Oxygen recoveries under ambient DO were 88-97%, and the so-called unidentified product of dichloramine decomposition formed at about three-fold greater concentration under ambient compared to low DO, like NDMA, consistent with a DO limitation. Unidentified product formation stemmed from peroxynitrite decomposition products reacting with mono/dichloramine. For a 2:2:1 nitrogen/oxygen/chlorine atom ratio and its estimated molar absorptivity, unidentified product inclusion with uncertainty may close oxygen recoveries and increase nitrogen recoveries to 98% (ambient DO) and 100% (low DO).


Assuntos
Óxidos de Nitrogênio , Oxigênio , Purificação da Água , Nitrogênio , Nitritos/química , Nitratos/química , Amônia/química , Espécies Reativas de Nitrogênio , Ácido Peroxinitroso , Cloraminas/química , Dimetilnitrosamina/química
9.
AAPS PharmSciTech ; 25(1): 19, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38267707

RESUMO

Between February 2020 and January 2022, the Food and Drug Administration (FDA) recalled 281 metformin extended-release products due to the presence of N-nitrosodimethylamine (NDMA) above the acceptable daily intake (ADI, 96 ng/day). Our previous studies indicated presence of NDMA levels above ADI in both metformin immediate and extended-release products. When metformin products have NDMA impurities, it is indispensable to check for the same impurities in metformin combination products. Therefore, the objective of the present study was to evaluate in-use stability of commercial metformin combination products for NDMA. For this purpose, metformin products in combination with glyburide (GB1-GB12), glipizide (GP1-GP8), pioglitazone (P1-P3), alogliptin (A1, A2), and linagliptin (L1, L2) were repacked in pharmacy vials, stored at 30°C/75% RH for 3 months, and monitored for NDMA impurity. The NDMA level varied from 0 to 156.8 ± 32.8 ng/tablet initially and increased to 25.4 ± 5.1 to 455.0 ± 28.4 ng/tablet after 3 months of exposure to in-use condition. Initially, 18 products have NDMA level below ADI limit before exposure which decreased to 7 products (GB5, GP3, GP5, A1, A2, L1, and L2) meeting specification. In conclusion, in-use stability study provides quality and safety risk assessment of drug products where nitroso impurities are detected in the probable condition of use.


Assuntos
Metformina , Nitrosaminas , Estados Unidos , Humanos , United States Food and Drug Administration , Dimetilnitrosamina , Comprimidos
10.
Environ Sci Technol ; 58(6): 2973-2983, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38290429

RESUMO

N-nitrosodimethylamine (NDMA) precursor concentrations along four major rivers in Minnesota, USA were quantified and correlated with watershed land cover types, anthropogenic activity, and organic matter characteristics. River water samples (36 in total) were chloraminated under uniform formation conditions (UFC) before and after lime-softening treatment, and the resulting NDMA concentrations were quantified (NDMAUFC). Regarding land cover, NDMAUFC in raw river water exhibited weak positive correlations with urban land (ρ = 0.33, p = 0.05) and cropland coverage (ρ = 0.35, p = 0.04). For anthropogenic activity, NDMAUFC in raw river water positively correlated with the number of feedlots (ρ = 0.57), total weight of animals (ρ = 0.68), and total number of domestic wastewater treatment plants (WWTPs; ρ = 0.63) with p < 0.01. NDMAUFC positively correlated with region IV fluorescence intensity from fluorescence excitation-emission spectra (ρ = 0.70, p < 0.01). Lime softening of river water typically increased NDMAUFC and preferentially removed organic matter that fluoresces in region V, suggesting that the organic matter in this region decreases NDMAUFC by competing for available chloramines. Overall, animal feedlots, along with domestic WWTPs, are predominant sources of NDMA precursors in the studied watersheds, while croplands and urban runoff are of lesser importance.


Assuntos
Compostos de Cálcio , Água Potável , Óxidos , Poluentes Químicos da Água , Purificação da Água , Animais , Águas Residuárias , Dimetilnitrosamina/análise , Abrandamento da Água , Poluentes Químicos da Água/análise , Purificação da Água/métodos
11.
Chem Pharm Bull (Tokyo) ; 72(2): 166-172, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38296559

RESUMO

The recent discovery of N-nitrosodimethylamine (NDMA), a mutagenic N-nitrosamine, in pharmaceuticals has adversely impacted the global supply of relevant pharmaceutical products. Contamination by N-nitrosamines diverts resources and time from research and development or pharmaceutical production, representing a bottleneck in drug development. Therefore, predicting the risk of N-nitrosamine contamination is an important step in preventing pharmaceutical contamination by DNA-reactive impurities for the production of high-quality pharmaceuticals. In this study, we first predicted the degradation pathways and impurities of model pharmaceuticals, namely gliclazide and indapamide, in silico using an expert-knowledge software. Second, we verified the prediction results with a demonstration test, which confirmed that N-nitrosamines formed from the degradation of gliclazide and indapamide in the presence of hydrogen peroxide, especially under alkaline conditions. Furthermore, the pathways by which degradation products formed were determined using ranitidine, a compound previously demonstrated to generate NDMA. The prediction indicated that a ranitidine-related compound served as a potential source of nitroso groups for NDMA formation. In silico software is expected to be useful for developing methods to assess the risk of N-nitrosamine formation from pharmaceuticals.


Assuntos
Gliclazida , Indapamida , Nitrosaminas , Ranitidina , Dimetilnitrosamina , Preparações Farmacêuticas
12.
Environ Sci Process Impacts ; 26(3): 470-482, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38282562

RESUMO

N-Nitrosamines, nitroso compounds with strong carcinogenic effects on humans, have been frequently detected in natural waters. In agricultural areas, there is typically a lack of drinking water treatment processes and distribution systems. As a result, residents often consume groundwater as drinking water which may contain N-nitrosamines, necessitating the investigation of the occurrence, sources, and carcinogenic risk of N-nitrosamines within the groundwater of agricultural areas. This study identified eight N-nitrosamines in groundwater and river water in the Jianghan Plain, a famous agricultural region in central China. N-Nitrosodimethylamine (NDMA), N-nitrosodiethylamine (NDEA), N-nitrosomorpholine (NMOR), N-nitrosopyrrolidine (NPYR), and N-nitrosodi-n-butylamine (NDBA) were detected in groundwater, with NDMA being the main compound detected (up to 52 ng L-1). Comparable concentrations of these N-nitrosamines were also found in river water. From laboratory experiments, we found a tremendous potential for the formation of N-nitrosamines in groundwater. Principal component analysis and multiple linear regression analysis results showed that the primary sources of N-nitrosamines in groundwater were the uses of nitrogen fertilizers and pesticides carrying specific N-nitrosamines such as NPYR. The average total carcinogenic risk values of detected N-nitrosamines were higher than the acceptable risk level (10-5), suggesting a potential carcinogenic risk of groundwater. Further research is urgently needed to minimize N-nitrosamine levels in the groundwater of agricultural areas, particularly in those where pesticides and fertilizers are heavily used.


Assuntos
Água Potável , Nitrosaminas , Praguicidas , Humanos , Água Potável/análise , Fertilizantes/análise , Dimetilnitrosamina/análise , Carcinógenos/análise , Praguicidas/análise
13.
Chemosphere ; 349: 140794, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38008293

RESUMO

The contribution of ozonation to the formation of particulate nitrosodi-methylamine (NDMA) in the aqueous aerosol phase was investigated using measurement data from 2018 in Seoul, Republic of Korea and a box model. The correlation between the NDMA concentration and aerosol liquid water content and box model results showed that aqueous aerosol phase reactions, including nitrosation and ozonation, might contribute to the formation of NDMA. The concentration of NDMA and the ratio of O3/dimethylamine exhibited a negative correlation, suggesting that the contribution of ozonation to NDMA formation may not be significant. Furthermore, when the daily concentration of NDMA exceeded 10 ng/m3, the pH was 3.96 ± 0.48, indicating that the impact of ozonation on NDMA concentration might not be significant. To quantitatively investigate the contribution of ozonation, the ozonation mechanism that forms NDMA was included in the box model developed in our previous study. The model results showed that the ozonation contributed to the ambient concentration of NDMA (7.9 ± 3.8% (winter); 1.9 ± 3.0% (spring); 10.0 ± 0.77% (summer); 3.6 ± 7.3% (autumn)). It is estimated that the relatively higher O3/NOx ratio in summer (1.63 ± 0.69; 0.64 ± 0.52 (winter); 1.14 ± 0.92 (spring); 0.52 ± 0.54 (autumn)) could enhance ozonation and that relatively lower pH in summer (2.2 ± 0.4; 5.3 ± 1.2 (winter); 3.9 ± 1.2 (spring); 3.9 ± 0.7 (autumn)) could hinder nitrosation compared to that in other seasons.


Assuntos
Ozônio , Poluentes Químicos da Água , Purificação da Água , Dimetilnitrosamina , Concentração de Íons de Hidrogênio , Poluentes Químicos da Água/análise , Metilaminas , Água , Atmosfera , Aerossóis , Purificação da Água/métodos
14.
Arch Toxicol ; 98(3): 821-835, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38127128

RESUMO

N-nitrosodimethylamine (NDMA) is classified as a human carcinogen and could be produced by both natural and industrial processes. Although its toxicity and histopathology have been well-studied in animal species, there is insufficient data on the blood and tissue exposures that can be correlated with the toxicity of NDMA. The purpose of this study was to evaluate gender-specific pharmacokinetics/toxicokinetics (PKs/TKs), tissue distribution, and excretion after the oral administration of three different doses of NDMA in rats using a physiologically-based pharmacokinetic (PBPK) model. The major target tissues for developing the PBPK model and evaluating dose metrics of NDMA included blood, gastrointestinal (GI) tract, liver, kidney, lung, heart, and brain. The predictive performance of the model was validated using sensitivity analysis, (average) fold error, and visual inspection of observations versus predictions. Then, a Monte Carlo simulation was performed to describe the magnitudes of inter-individual variability and uncertainty of the single model predictions. The developed PBPK model was applied for the exposure simulation of daily oral NDMA to estimate blood concentration ranges affecting health effects following acute-duration (≤ 14 days), intermediate-duration (15-364 days), and chronic-duration (≥ 365 days) intakes. The results of the study could be used as a scientific basis for interpreting the correlation between in vivo exposures and toxicological effects of NDMA.


Assuntos
Carcinógenos , Dimetilnitrosamina , Ratos , Humanos , Animais , Dimetilnitrosamina/toxicidade , Carcinógenos/toxicidade , Distribuição Tecidual , Pulmão , Fígado , Modelos Biológicos
15.
Artigo em Inglês | MEDLINE | ID: mdl-38158031

RESUMO

N-nitrosodimethylamine (NDMA), one of the new nitrogen-containing disinfection by-products, is potentially cytotoxic, genotoxic, and carcinogenic. Its potential toxicological effects have attracted a wide range of attention, but the mechanism is still not sufficiently understood. To better understand the toxicological mechanisms of NDMA, zebrafish embryos were exposed to NDMA from 3 h post-fertilization (hpf) to 120hpf. Mortality and malformation were significantly increased, and hatching rate, heart rate, and swimming behavior were decreased in the exposure groups. The result indicated that NDMA exposure causes cardiac and spinal developmental toxicity. mRNA levels of genes involved in the apoptotic pathway, including p53, bax, and bcl-2 were significantly affected by NDMA exposure. Moreover, the genes associated with spinal and cardiac development (myh6, myh7, nkx2.5, eph, bmp2b, bmp4, bmp9, run2a, and run2b) were significantly downregulated after treatment with NDMA. Wnt and TGF-ß signaling pathways, crucial for the development of diverse tissues and organs in the embryo and the establishment of the larval spine, were also significantly disturbed by NDMA treatment. In summary, the disinfection by-product, NDMA, exhibits spinal and cardiac developmental toxicity in zebrafish embryos, providing helpful information for comprehensive analyses and a better understanding the mechanism of its toxicity.


Assuntos
Dimetilnitrosamina , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Dimetilnitrosamina/metabolismo , Larva/metabolismo , Embrião não Mamífero/metabolismo , Coração
16.
J Hazard Mater ; 463: 132961, 2024 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-37951171

RESUMO

Amine-based pharmaceuticals are a significant class of N-nitrosodimethylamine (NDMA) precursors. This study investigated the use of unactivated peroxymonosulfate (PMS) to control amine-based pharmaceuticals and their NDMA formation potential. Kinetic analysis and product identification revealed that sumatriptan and doxylamine primarily underwent reactions at their tertiary amine group, while ranitidine and nizatidine had both tertiary amine and thioether group as reaction sites. The NDMA formation from sumatriptan and doxylamine during post-chloramination was significantly reduced with the abatement of the parent contaminants, while the formation of NDMA remained high even if full abatement of ranitidine and nizatidine was achieved. Product formation kinetics and reference standard tests revealed the great contribution of transformation products to NDMA formation. Ranitidine could be oxidized to sulfoxide-type product ranitidine-SO and N-oxide type product ranitidine-NO. Ranitidine-SO exhibited a high NDMA yield comparable to that of ranitidine (>90%), while ranitidine-NO showed a low NDMA yield (2%). With further oxidation of ranitidine-SO at the tertiary amine group, NDMA formation was reduced by more than 90%. The underlying mechanism for the importance of the tertiary amine group in NDMA formation was demonstrated by quantum chemical calculation. These findings underscore the potential of PMS pre-oxidation on NDMA control.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Aminas , Ranitidina , Cloraminas , Dimetilnitrosamina/análise , Sumatriptana/análise , Cinética , Nizatidina/análise , Doxilamina/análise , Preparações Farmacêuticas , Poluentes Químicos da Água/análise
17.
Environ Sci Technol ; 57(37): 13959-13969, 2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37671798

RESUMO

The Crow River, a tributary of the Mississippi River in Minnesota, U.S.A., that is impacted by agricultural activities and municipal wastewater discharges, was sampled approximately monthly at 12 locations over 18 months to investigate temporal and spatial variations in N-nitrosodimethylamine (NDMA) precursor levels. NDMA precursors were quantified primarily by measuring NDMA formed under the low chloramine dose uniform formation conditions protocol (NDMAUFC) and occasionally using the high dose formation potential protocol (NDMAFP). Raw water NDMAUFC concentrations (2.2 to 128 ng/L) exhibited substantial temporal variation but relatively little spatial variation. An increase in NDMAUFC was observed for 126 of 169 water samples after lime-softening treatment. A kinetic model indicates that under chloramine-limited UFC test conditions, the increase in NDMAUFC can be attributed to a decrease in competition between precursors and natural organic matter (NOM) for chloramines and reduced interactions of precursors with NOM. NDMAUFC concentrations correlated positively with dissolved nitrogen concentration (ρ = 0.44, p < 0.01) when excluding the spring snowmelt period and negatively correlated with dissolved organic carbon concentration (ρ = -0.47, p < 0.01). Overall, NDMA precursor levels were highly dynamic and strongly affected by lime-softening treatment.


Assuntos
Dimetilnitrosamina , Águas Residuárias , Abrandamento da Água , Água
18.
J Chromatogr A ; 1708: 464323, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37696123

RESUMO

Control of N-nitrosamines has been in the focus of health authorities in recent years because many of these compounds are probable human carcinogens. In July 2018 the U.S. Food and Drug Administration (FDA) announced a recall for valsartan-containing medicines due to contamination with the carcinogenic low molecular weight nitrosamine, N-nitrosodimethylamine (NDMA). It has become clear that the problem can not only exist in the case of sartans, but in any active pharmaceutical ingredient (API)/drug product in which secondary or tertiary amines are present (as API or as impurities) and a nitrosating agent is available. The decision was made by regulators, according to which manufacturers of pharmaceutical products are obliged to perform a risk assessment for the potential presence of nitrosamines in active pharmaceutical ingredients and drug products. This resulted in a high demand for validated analytical methods that are able to quantify N-nitrosamines at low ppb levels in pharmaceutical products. In this work we have developed and validated a generic fast GC-MS method suitable for the quantitative determination of a wide range of low molecular weight nitrosamines, which include N-nitrosodiethylamine (NDEA), N-nitrosodimethylamine (NDMA), N-nitroso-diphenylamine (NDPh), N-nitrosodipropylamine (NDPA), N-nitrosomethylethylamine (NMEA), N-nitrosomorpholine (NMOR), N-nitrosopiperidine (NPIP), N-nitroso-ethylisopropylamine (EIPNA), N-nitroso-diisopropylamine (DIPNA), N-nitroso-N-methylaniline (NMPA), 1-Methyl-4-nitrosopiperazine (MeNP) and N-nitroso-pyrrolidine (NPYR). The advantage of the method is that it is possible to screen low molecular weight nitrosamines in low concentrations with a short analysis time in a wide range of APIs and drug products.


Assuntos
Dimetilnitrosamina , Nitrosaminas , Estados Unidos , Humanos , Preparações Farmacêuticas , Cromatografia Gasosa-Espectrometria de Massas , Peso Molecular
19.
J Mol Graph Model ; 125: 108578, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37552910

RESUMO

N-Nitrosodimethylamine (NDMA, ONN(CH3)2) is a highly potent carcinogenic investigated by health authorities in some countries. In this manuscript, density functional theory (DFT) is applied to study the NDMA molecular and dissociative adsorption on a Ni8 nanocluster. Molecular adsorption is two times stronger than the NDMA adsorption on the Ni{111} surface. NDMA dissociative adsorption is found more stable than molecular adsorption by ≈1 eV. To dissociate the NDMA molecule into O and NN(CH3)2 fragments, an activation energy is calculated in 0.954 and 0.810 eV from the two most stable molecular configurations. However, to dissociate the NDMA molecule into ON and N(CH3)2 fragments, a smaller activation energy of 0.654 eV is calculated. With the inclusion of the London dispersion forces (optB88-vdW functional), NDMA molecular interactions are a bit stronger. However, the activation energies are slightly smaller. Meta-GGA functional SCAN has also, been applied. The inclusion of the implicit solvation model displays a NDMA weaker interaction with the Ni8 nanocluster. Dissociative adsorption is more stable than molecular adsorption, but the energy difference is a bit smaller, ≈0.850 eV. Present results show that the Ni8 nanoclusters are promising catalysts to NDMA elimination from water.


Assuntos
Dimetilnitrosamina , Poluentes Químicos da Água , Adsorção , Água
20.
J Pharm Sci ; 112(9): 2321-2325, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37478970

RESUMO

Most N-Nitrosamine compounds are found to be genotoxic in several animal species. Some are classified as probable or possible human carcinogens and very low acceptable daily intake has been established such as 96 ng/day for N-nitrosodimethylamine (NDMA) and 26.5 ng/N-nitrosodiethylamine (NDEA). The pharmaceutical industry has considered all processing areas for potential formation or contamination of N-nitrosamine. One risk is the potential contamination of nitrosamine during drug product blister packaging using lidding foils containing nitrocellulose, and different approaches have been used by pharmaceutical companies to evaluate and mitigate this risk. Herein we share a perspective from IQ Consortium N-nitrosamine Working Group on some of the approaches and corresponding results. From these assessments, it was concluded that the risk of nitrosamine contamination during blister packaging is negligible. The approaches shared in this perspective can be incorporated into risk assessment for nitrosamine contamination during drug product packaging at other pharmaceutical companies.


Assuntos
Nitrosaminas , Animais , Humanos , Vesícula , Dimetilnitrosamina , Contaminação de Medicamentos/prevenção & controle , Embalagem de Produtos , Preparações Farmacêuticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...